

RESEARCH LABORATORY «OPTOELECTRONICS AND SOLAR POWER ENGINEERING»

polycrystalline Monoand compounds from A_2B_6 , A_4B_6 group some other materials and has attracted an increased interest can be used as an anti-reflective, absorptive and window layers of photovoltaic unijunction and tandem solar cells (SC), base layers of photodetectors radiation and hard detectors. injection photodetectors, lightemitting diodes, gas sensors, pyroand piezoelectronic devices etc.

Direction of laboratory scientific activities is associated with the researchers of structural, electrical and optical compound properties of A_2B_6 (CdTe, CdSe, ZnO, ZnTe, ZnSe, ZnS), A_4B_6 (SnS, SnSe) and solid solutions based on them (CdMnTe, CdMnS, ZnCdTe); studying of defect formation process; properties of thin film heterojunctions based on these compounds. Great attention is given to the study of a new class of four-components compounds such as CZTS (Se) (Cu₂ZnSnS₄ and Cu₂ZnSnSe₄) which is perspective for use in solar energy as absorbing layers of thin-film solar cell for widespread use.

Research laboratory proposes the technology of the device structures (solar cells, optical detectors, and hard radiation detector gases) development based on heterojunctions and semiconductor-metal structures.

The main advantages of proposed technology - reduce costs by replacing singlecrystal silicon.